Immature Midbrain Dopaminergic Neurons Derived from Floor‐Plate Method Improve Cell Transplantation Therapy Efficacy for Parkinson's Disease
نویسندگان
چکیده
Recent reports have indicated human embryonic stem cells-derived midbrain dopamine (mDA) neurons as proper cell resources for use in Parkinson's disease (PD) therapy. Nevertheless, no detailed and systematic study has been conducted to identify which differentiation stages of mDA cells are most suitable for transplantation in PD therapy. Here, we transplanted three types of mDA cells, DA progenitors (differentiated in vitro for 16 days [D16]), immature DA neurons (D25), and DA neurons (D35), into PD mice and found that all three types of cells showed high viability and strong neuronal differentiation in vivo. Both D25 and D35 cells showed neuronal maturation and differentiation toward TH+ cells and, accordingly, satisfactory behavioral functional recovery. However, transplanted D16 cells were less capable of producing functional recovery. These findings provide a valuable guideline for standardizing the differentiation stage of the transplantable cells used in clinical cell therapy for PD. Stem Cells Translational Medicine 2017;6:1803-1814.
منابع مشابه
Induction of midbrain dopaminergic neurons by Sonic hedgehog
Midbrain dopaminergic neurons, whose loss in adults results in Parkinson's disease, can be specified during embryonic development by a contact-dependent signal from floor plate cells. Here we show that the amino-terminal product of Sonic hedgehog autoproteolysis (SHH-N), an inductive signal expressed by floor plate cells, can induce dopaminergic neurons in vitro. We show further that manipulati...
متن کاملIsolation of Human Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for Successful Transplantation
Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson's disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting using a floor plate marker, CORIN. We ...
متن کاملDifferences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells.
Directed differentiation and purification of mesencephalic dopaminergic (mesDA) neurons from stem cells are crucial issues for realizing safe and efficient cell transplantation therapies for Parkinson's disease. Although recent studies have identified the factors that regulate mesDA neuron development, the mechanisms underlying mesDA neuron specification are not fully understood. Recently, it h...
متن کاملImprovement in Signs of Parkinson's Disease in Rats Following Transplantation of Embryonic Stem Cells
Purpose: Parkinson's disease is a degenerative disease produced by the death of dopaminergic neurons, and the response to current treatments is varied. It is important to develop a model for the evaluation of ES cells as an alternative model for treatment. Materials and Methods: The model for PD was developed in rats. First, ES cells were transplanted into experimental models in three groups: ...
متن کاملImproved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons.
The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting stra...
متن کامل